What is distech₂?

DisTecH, is an innovative and ambitious project seeking to revolutionise green hydrogen production by developing artificial photosynthesis technology. DisTecH2 doesn't just improve upon conventional electrolysis; rather, it proposes a disruptive approach: a modular photoelectrolyser that directly uses sunlight to generate green hydrogen without the need for external electricity.

Did you know...

Green hydrogen is crucial for energy and requires electricity, making the process expensive. DisTecH2 proposes using a modular photoelectrolyser that uses direct sunlight to produce hydrogen more efficiently and sustainably.

OBJECTIVES

INNOVATION

DEVELOP AND OPTIMISE new photoelectrocatalytic materials to improve efficiency and reduce costs.

PRODUCTION

BUILD A QUASI-SOLID-STATE MODULAR PHOTOELECTROLYSER, operating in continuous flow with direct solar capture.

ELECTRICITY PRODUCTION

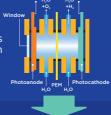
Implement a system that combines a PHOTOELECTROLYTIC CELL (PEC) + SOLID OXIDE FUEL CELL (SOFC), using the generated hydrogen to produce electricity efficiently.

METHODOLOGY & ACTIVITIES

The **DisTecH**, project is grounded in an innovative and multidisciplinary methodology, designed to overcome the current challenges in green hydrogen production. DisTecH₂ proposes the development of a cutting-edge modular photoelectrolyser, capable of generating green hydrogen without electrical consumption.

DEVELOPMENT OFADVANCED MATERIALS

Optimisation of photoelectrocatalysts based on Farth-abundant elements.


Ocobra ○apria isfo LEITƏT

MODULAR PHOTOELECTROLYSER

Implementation of a solar photoelectrolysis system operating in continuous flow with ion-exchange membranes.

Ocobra Naturgy → Oapria isfo LEITƏT

CONSTRUCTION AND VALIDATION OF A PEC PANEL PROTOTYPE

Assembly of unit cells into a solar hydrogen production prototype.

© cobra Naturgy ▶ ○ apria isfo LEITET

INTEGRATION WITH A SOLID OXIDE FUEL CELL (SOFC)

Evaluation of a hybrid system to convert green hydrogen into clean and continuous electricity.

Naturgy ► apria IREC9

Cost, efficiency, and carbon footprint analysis of the developed system.

© cobra Naturgy ▶ ○ apria isfo LEIT⊟T

IMPACT & BENEFITS

ENVIRONMENTAL

- Reduction of **CO**₂ emissions
- Use of sustainable materials
- Optimisation of water consumption in hydrogen production

ECONOMIC

- Lowering the cost of green hydrogen (<2 euros/kg)
- Reducing energy dependence, promoting decentralised selfgeneration
- Potential for industrialisation and commercialisation

SOCIAL

- **Job creation** in key sectors such as energy, engineering, and R&D
- Training and capacity-building in hydrogen technologies
- Contribution to a just energy transition within the EU.

